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A number of different approaches have been developed to estimate and image the elastic properties
of tissue. The biomechanical properties of tissues are vitally linked to function and pathology, but
cannot be directly assessed by conventional ultrasound, MRI, CT, or nuclear imaging. Research
developments have introduced new approaches, using either MRI or ultrasound to image the tissue
response to some stimulus. A wide range of stimuli has been evaluated, including heat, water jets,
vibration shear waves, compression, and quasistatic compression, using single or multiple steps or
low-frequency~,10 Hz! cyclic excitation. These may seem to be greatly dissimilar, and appear to
produce distinctly different types of information and images. However, our purpose in this tutorial
is to review the major classes of excitation stimuli, and then to demonstrate that they produce
responses that fall within a common spectrum of elastic behavior. Within this spectrum, the major
classes of excitation include step compression, cyclic quasistatic compression, harmonic shear wave
excitation, and transient shear wave excitation. The information they reveal about the unknown
elastic distribution within an imaging region of interest are shown to be fundamentally related
because the tissue responses are governed by the same equation. Examples use simple geometry to
emphasize the common nature of the approaches. ©2005 Acoustical Society of America.
@DOI: 10.1121/1.1880772#

PACS numbers: 43.80.Qf, 43.80.Ev, 43.80.Jz@FD# Pages: 2705–2712
th
ke
I. INTRODUCTION

The biomechanical properties of tissues, particularly
stiffness or tactile hardness of tissues, are inextricably lin
e
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material. It is shown that the elastic response within the m
terial under the different stimuli all belong within a commo
spectrum of elastic behavior, and some information conce
ing the inclusion can be derived from each of the respon
to the stimuli.
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wave speedcs’AE/3r can be used to obtain informatio
about the stiffness of the material. Therefore, in elas
graphic imaging experiments, the focus of attention is ty
cally on the shear wave properties and not on pressure w
properties, which have already been investigated extensi
in ultrasonic tissue characterization studies.

Equation~6! can also be a starting point for the consi
eration of step-compression elastography experiments.
static displacement or very low-frequency cyclic motion, t
inertial terms are negligibly small. And for nearly incom
pressible biomaterials, the divergence~or dilatation! “"u is
nearly zero, so Eq.~6! reduces to Laplace’s equation,

„2u50. ~11!

Solutions to Laplace’s equation depend on and re
their extrema on the boundary values ofu. For simple geom-
etry, as will be shown in the next section, the solution
ux(x) is linear with x, a fact that is assumed to be true
most step-compression elastographic imaging experimen

III. PROPOSED TECHNIQUES FOR ESTIMATING
ELASTIC PROPERTIES OF TISSUES

A. Step-compression imaging

For convenience we consider a two-dimensional cas
a linear viscoelastic, homogeneous, isotropic material w
tissue mimicking properties:E0 in the kPa range,r ~density!
near 1.0 g/cm3, andn ~Poisson’s ratio! in the range 0.49,n
,0.5, that is, nearly incompressible. This block of tissu
mimicking material is of a rectangular cross section and
rigidly constrained along one face and further constrained
a parallel plate used for compression or other enforced
placements. We further assume that the tissue mimicking
terial is allowed to slip freely along the two constrainin
plates so that the displacement and stress fields will be in
pendent of position in they direction. Body forces due to
gravity are assumed to be negligible. The example is sho
in Fig. 1.

We assume that compression is applied at timet0 , and
that images are obtained using some ideal imaging sys
before and after the compression step. In the case of
coelastic or poroelastic materials, the state of the mate
response and its image will be time dependent until suffic
relaxation has occurred. Assuming that a dense field of
placements can be estimated from the two images, in
homogeneous case, Eq.~11! predicts that the displacemen
ux(x) will be linear with x, as shown in Fig. 1~b! ~solid
lines!. In the case where a small inhomogeneous region
E8.E0 ~assumed here to be of relatively small contr
E8/E0,2), is present, a plot of displacement taken on a l
bisecting the inhomogeneity will produce a local deviati
from the linear slope. The exact details depend on the pre
geometry and the stress concentration effect,34 but the gen-
eral trend is shown in Fig. 1~b! ~dotted lines!.
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ion,
s
sed
complementary to the compression result when one con
ers the uniqueness of inverse solutions from these exp
ments. However, the details of that subject are beyond
scope of this discussion. As in the compression step res
Eq. ~11! predicts that for a homogeneous medium displa
ment,uy(x) will be linear withx, which can be perturbed b
an inclusion. As before, the exact details of the shear in
vicinity of the inclusion require treatment of the exact geo
etry and elastic contrast of the inclusion. However, str
concentration effects are highly localized in the surround
medium. As demonstrated in Fig. 2, a spatial derivat
can be employed to produce a more intuitive disp
where homogeneous regions exhibit constant shear st
exy5(1/2)@]uy /]x1]ux /]y#. However, it must be under
stood that constant strain image values correlate with c
stantE only under certain idealized, low-contrast condition

FIG. 2. Static shear experiment on a same block shown in Fig. 1:~a! Block
before~solid lines! and after~dotted lines! shear by a rigid plate.~b! Shear
displacement field~uy; vertical axis! along a line parallel to the x-axis
through the small rectangular inclusion.~c!
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C. Cyclic, quasistatic imaging

If a shear step is repeated sinusoidally at a relativ
slow rate~e.g., at less than five cycles per second!, then for
most practical cases of tissues and organs, the inertial te
of the governing equations can still be neglected. The beh
ior can be described in the same functional form as the st
case, but modified by the addition of a sinusoidal tim
varying term. Thus, if the shear plate of Fig. 2 is moved
uy(x50)5U0 cosvLt, where vL is low frequency, then
uy(x)5U0(12x/d)cosvLt for 0,x,d, and the resulting
strain is similarly time varying. This is shown schematica
in Fig. 3. The practical advantages of cyclic quasistatic me
ods over single-step methods are primarily due to the ab
to average and automate, thereby reducing noise
artifacts.16,35

FIG. 3. Cyclical quasi-static shear experiment on the block shown of Fig
~a! Block before~solid lines! and at peak~dotted lines! shear. The applied
shear is sinusoidal at low frequency.~b! Peak shear displacements~solid
line!, along a parallel to the x-axis through the small rectangular inclus
are linear but slowly time-varying.~c! Peak shear strain along this line i
also slowly time-varying. The dotted lines indicate the perturbation cau
by the presence of inhomogeneity.
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D. Shear wave vibration

As the left vertical plate of Fig. 3 is displaced at high
frequencies, the time-varying inertial terms of the govern
equation cannot be ignored and the behavior of the med
obeys the classic wave equation.

For a plane wave propagating in thex direction with
particle motion in they direction @uy5uy(x,t) and ux5uz

50], the shear wave equation@Eq. ~7!#, reduces to a one
dimensional equation of the form

]2uy

]x2
5

1

cs
2

]2uy

]t2
. ~12!

For regular geometries and simple conditions, with lo
loss or attenuation, the response of the medium will pea
specific eigenfrequencies, with standing wave or eigenmo
patterns produced within the interior. Specifically, these
cur when the frequency is such that odd multiples of quar
wavelengths in thex direction are created. These frequenc
are given by
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patterns that can be more easily identified when using m
tifrequency excitations.

These vibration patterns can be imaged in real time
ing modified color Doppler techniques and are generally
ferred to as vibration sonoelastography, or simply, sonoe
tography. Specifically, the Doppler spectral variance
been shown to be proportional to the vibration displacem
amplitude in a sinusoidal steady state.38 This can be dis-
played as a color scale overlay on the B-scan image. It
been shown by theory, by finite element modeling, and
experiments that hard inclusions presen.8(hard)-o7g/ard
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noelastic vibration image will be comprised of the additi
of a homogeneous solution to Eq.~13! ~right-hand side equa
to zero! plus the scattered wave. This is depicted in Fig.

Conceptually, this means that even a very small po
inhomogeneity, even one well below the resolution of t
imaging system, can be detected as a localized disturban
the form of a free space Green’s function, that is a 1/r falloff,
as depicted in Fig. 5. This is similar to a small point sou
of light detected~and then blurred! by an optical imaging
system, even though the point source aperture may be b
the nominal resolution of the imaging lens. However, t
strength of the inhomogeneity’s signature increases with
creasing frequency. Simulations and experiments have d
onstrated that the sonoelastic image contrast of lesions
creases with increasing frequency8 until other frequency-
dependent effects, such as lossy behavior, present a pra
upper frequency limitation.40

This wave behavior limits the resolvability of two sma
neighboring points since the Green’s function scatte
waves pattern produced by each has an inherent type of
which will add coherently when the two points are close
spaced. Thus, no general claim for subresolution resolva
ity can be made, even though a general claim for subres
tion detectability can be made.

IV. DISCUSSION AND CONCLUSION

A plethora of techniques for estimating and imaging t
elastic properties of tissue have been proposed, each
employing a unique excitation function to create displa
ments in tissue. We demonstrate, however, that the m
commonly utilized methods, from step-compression elast
raphy through vibration~sono! elastography, fall on a con
tinuum of elastic behavior. The information that can be d
rived from an ideal imaging system can be used, in e
case, to identify an inclusion that is defined by some ela
contrast compared to the background. However, the part
lar details of preprocessing, detectability, and resolvabi
do change from static and quasistatic to dynamic syst
where wave behaviors are exhibited. Figure 6 compares
shear behavior of a simple homogeneous system as it is
cited by different displacement functions along the co
tinuum of frequencies.

As a practical matter, the imaging system~typically ul-
trasound or MRI! resolution and noise characteristics w
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limit the performance of elasticity imaging and reconstru
tion schemes, along with the other practical limits from t
sue motion and loss mechanisms. Specifically, on the s
and low-frequency side of the continuum, tissue motion o
of-plane, noise, and speckle decorrelation artifacts from
tations all limit the displacement and derivative of displac
ment estimations.39 At the other end of the continuum, th
high losses or attenuation of shear waves above 200–40
creates a practical limitation on whole organ penetration
potential increases in lesion contrast that would otherwise
predicted from Eq.~12!. Lower bounds on correlation-base
displacement estimates40 and Doppler estimates of vibratio
amplitudes,38 and MRE detection of vibration23 have demon-
strated very fine scale~micron or below! possibilities given
an adequate signal-to-noise ratio.

There is another important topic of exact inverse so
tions ~of unknown elastic properties from the imaging da!
that is beyond the scope of this paper. However, a few g
eral remarks can be made. The exact inversion of static
quasistatic cyclic compression cases requires knowledg
boundary conditions that in most cases lie outside of
imaged region of interest. Solving for the unknown stre
field ~including localized stress concentrations! is difficult
but necessary to utilize the local stress–strain behavio
solve for elastic parameters. In shear wave propagation, h
ever, local estimates of displacement and wave behavior
be used to generate localized estimates of elastic proper
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