A unified view of imaging the elastic properties of tissue
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A number of different approaches have been developed to estimate and image the elastic properties
of tissue. The biomechanical properties of tissues are vitally linked to function and pathology, but
cannot be directly assessed by conventional ultrasound, MRI, CT, or nuclear imaging. Research
developments have introduced new approaches, using either MRI or ultrasound to image the tissue
response to some stimulus. A wide range of stimuli has been evaluated, including heat, water jets,
vibration shear waves, compression, and quasistatic compression, using single or multiple steps or
low-frequency~-<10 HZ cyclic excitation. These may seem to be greatly dissimilar, and appear to
produce distinctly different types of information and images. However, our purpose in this tutorial

is to review the major classes of excitation stimuli, and then to demonstrate that they produce
responses that fall within a common spectrum of elastic behavior. Within this spectrum, the major
classes of excitation include step compression, cyclic quasistatic compression, harmonic shear wave
excitation, and transient shear wave excitation. The information they reveal about the unknown
elastic distribution within an imaging region of interest are shown to be fundamentally related
because the tissue responses are governed by the same equation. Examples use simple geometry to
emphasize the common nature of the approaches20@5 Acoustical Society of America.
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I. INTRODUCTION

The biomechanical properties of tissues, particularly the
stiffness or tactile hardness of tissues, are inextricably linked



material. It is shown that the elastic response within the ma-
terial under the different stimuli all belong within a common
spectrum of elastic behavior, and some information concern-
ing the inclusion can be derived from each of the responses
to the stimuli.



wave speects” VE/3r can be used to obtain information
about the stiffness of the material. Therefore, in elasto-
graphic imaging experiments, the focus of attention is typi-
cally on the shear wave properties and not on pressure wave
properties, which have already been investigated extensively
in ultrasonic tissue characterization studies.

Equation~6! can also be a starting point for the consid-
eration of step-compression elastography experiments. For
static displacement or very low-frequency cyclic motion, the
inertial terms are negligibly small. And for nearly incom-
pressible biomaterials, the divergenas dilatatiord V-u is
nearly zero, so Eq:6! reduces to Laplace’s equation,

. 2u=0. 11

Solutions to Laplace’s equation depend on and reach
their extrema on the boundary valuesuofFor simple geom-
etry, as will be shown in the next section, the solution for
u,(x) is linear withx, a fact that is assumed to be true in
most step-compression elastographic imaging experiments.

IIl. PROPOSED TECHNIQUES FOR ESTIMATING
ELASTIC PROPERTIES OF TISSUES

A. Step-compression imaging

For convenience we consider a two-dimensional case of
a linear viscoelastic, homogeneous, isotropic material with
tissue mimicking propertie€, in the kPa ranger ~density
near 1.0 g/cmy andn ~Poisson’s ratibin the range 0.4@n
<0.5, that is, nearly incompressible. This block of tissue-
mimicking material is of a rectangular cross section and is
rigidly constrained along one face and further constrained by
a parallel plate used for compression or other enforced dis-
placements. We further assume that the tissue mimicking ma-
terial is allowed to slip freely along the two constraining
plates so that the displacement and stress fields will be inde-
pendent of position in the direction. Body forces due to
gravity are assumed to be negligible. The example is shown
in Fig. 1.

We assume that compression is applied at ttgyeand
that images are obtained using some ideal imaging system,
before and after the compression step. In the case of vis-
coelastic or poroelastic materials, the state of the material
response and its image will be time dependent until sufficient
relaxation has occurred. Assuming that a dense field of dis-
placements can be estimated from the two images, in the
homogeneous case, Ed.1! predicts that the displacement
u,(x) will be linear with x, as shown in Fig. “b! ~solid
lined. In the case where a small inhomogeneous region of
E’'>E, ~assumed here to be of relatively small contrast
E'/Ey<2), is present, a plot of displacement taken on a line
bisecting the inhomogeneity will produce a local deviation
from the linear slope. The exact details depend on the precise
geometry and the stress concentration effédit the gen-
eral trend is shown in Fig.~i! ~dotted lines.
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FIG. 2. Static shear experiment on a same block shown in Figa Block

before-~solid lined and after-dotted lines shear by a rigid plateb! Shear  FIG. 3. Cyclical quasi-static shear experiment on the block shown of Fig. 1:

displacement fieldtu,; vertical axi¢ along a line parallel to the x-axis -al Block before-solid lined and at peakdotted line$ shear. The applied

through the small rectangular inclusiorc! shear is sinusoidal at low frequencfp! Peak shear displacemenisolid
linel, along a parallel to the x-axis through the small rectangular inclusion,
are linear but slowly time-varyingc! Peak shear strain along this line is
also slowly time-varying. The dotted lines indicate the perturbation caused
by the presence of inhomogeneity.

complementary to the compression result when one consid-

ers the uniqueness of inverse solutions from these expere cyclic, quasistatic imaging

ments. However, the details of that subject are beyond the ) ) . ,
scope of this discussion. As in the compression step results If a shear step is repeated sinusoidally at a relatively

Eq.~11! predicts that for a homogeneous medium displace-SIOW rate-e.g., at less than five cycles per sedorttien for

ment,u,(x) will be linear withx, which can be perturbed b most practical cases of tissues and organs, the inertial terms
Ty ' b Y of the governing equations can still be neglected. The behav-

icinity of the inclusi . fh ‘ieor can be described in the same functional form as the static
vicinity of the inclusion require treatment of the exact geom-case, but modified by the addition of a sinusoidal time-

etry and elastic contrast of the inclusion. However, Stres%arying term. Thus, if the shear plate of Fig. 2 is moved as
concentration effects are highly localized in the surrounding, (x=0)=U,coswvit, where v, is low frequency, then

medium. As demonstrated in Fig. 2, a s.patlgll de”_Va“Veuz(x)zUo(l—x/d)covat for 0<x<d, and the resulting
can be employed to produce a more intuitive displaystrain is similarly time varying. This is shown schematically
where homogeneous regions exhibit constant shear straifh Fig. 3. The practical advantages of cyclic quasistatic meth-
exy=(1/2)d Juy/]x+ Juy/]y#. However, it must be under- ods over single-step methods are primarily due to the ability
stood that constant strain image values correlate with corto average and automate, thereby reducing noise and

stantE only under certain idealized, low-contrast conditions. artifacts®



D. Shear wave vibration

As the left vertical plate of Fig. 3 is displaced at higher
frequencies, the time-varying inertial terms of the governing
equation cannot be ignored and the behavior of the medium
obeys the classic wave equation.

For a plane wave propagating in tkedirection with
particle motion in they directionfu,=uy(x,t) and u,=u,
=0], the shear wave equatiditq. ~7'#, reduces to a one-
dimensional equation of the form

TPuy 1 JPu,
— == ~12!

X2 2 2

For regular geometries and simple conditions, with low
loss or attenuation, the response of the medium will peak at
specific eigenfrequencies, with standing wave or eigenmodal
patterns produced within the interior. Specifically, these oc-
cur when the frequency is such that odd multiples of quarter-
wavelengths in the direction are created. These frequencies
are given by

2n—1
f=



patterns that can be more easily identified when using mul-
tifrequency excitations.

These vibration patterns can be imaged in real time us-
ing modified color Doppler techniques and are generally re-
ferred to as vibration sonoelastography, or simply, sonoelas-
tography. Specifically, the Doppler spectral variance has
been shown to be proportional to the vibration displacement
amplitude in a sinusoidal steady stafeThis can be dis-
played as a color scale overlay on the B-scan image. It has
been shown by theory, by finite element modeling, and by
experiments that hard inclusions presen.8(hard)-o7g/ardsirdcby



noelastic vibration image will be comprised of the additionlimit the performance of elasticity imaging and reconstruc-
of a homogeneous solution to EG.3! ~right-hand side equal tion schemes, along with the other practical limits from tis-
to zerd plus the scattered wave. This is depicted in Fig. 5. sue motion and loss mechanisms. Specifically, on the static
Conceptually, this means that even a very small poineaind low-frequency side of the continuum, tissue motion out-
inhomogeneity, even one well below the resolution of theof-plane, noise, and speckle decorrelation artifacts from ro-
imaging system, can be detected as a localized disturbance tations all limit the displacement and derivative of displace-
the form of a free space Green'’s function, that israfalloff, ment estimationd® At the other end of the continuum, the
as depicted in Fig. 5. This is similar to a small point sourcehigh losses or attenuation of shear waves above 200—400 Hz
of light detected-and then blurredby an optical imaging creates a practical limitation on whole organ penetration and
system, even though the point source aperture may be belopotential increases in lesion contrast that would otherwise be
the nominal resolution of the imaging lens. However, thepredicted from Eq-12!. Lower bounds on correlation-based
strength of the inhomogeneity’s signature increases with indisplacement estimat®sand Doppler estimates of vibration
creasing frequency. Simulations and experiments have denamplitudes’® and MRE detection of vibratidrihave demon-
onstrated that the sonoelastic image contrast of lesions irstrated very fine scalemicron or below possibilities given
creases with increasing frequeficyntil other frequency- an adequate signal-to-noise ratio.
dependent effects, such as lossy behavior, present a practical There is another important topic of exact inverse solu-
upper frequency limitatiof° tions ~of unknown elastic properties from the imaging data
This wave behavior limits the resolvability of two small that is beyond the scope of this paper. However, a few gen-
neighboring points since the Green’s function scatterearal remarks can be made. The exact inversion of static and
waves pattern produced by each has an inherent type of bluguasistatic cyclic compression cases requires knowledge of
which will add coherently when the two points are closelyboundary conditions that in most cases lie outside of the
spaced. Thus, no general claim for subresolution resolvabiimaged region of interest. Solving for the unknown stress
ity can be made, even though a general claim for subresoldield ~including localized stress concentratibris difficult
tion detectability can be made. but necessary to utilize the local stress—strain behavior to
solve for elastic parameters. In shear wave propagation, how-
ever, local estimates of displacement and wave behavior can

IV. DISCUSSION AND CONCLUSION be used to generate localized estimates of elastic properties,

A plethora of techniques for estimating and imaging the
elastic properties of tissue have been proposed, each one
employing a unique excitation function to create displace-
ments in tissue. We demonstrate, however, that the most
commonly utilized methods, from step-compression elastog-
raphy through vibrationsond elastography, fall on a con-
tinuum of elastic behavior. The information that can be de-
rived from an ideal imaging system can be used, in each
case, to identify an inclusion that is defined by some elastic
contrast compared to the background. However, the particu-
lar details of preprocessing, detectability, and resolvability
do change from static and quasistatic to dynamic systems
where wave behaviors are exhibited. Figure 6 compares the
shear behavior of a simple homogeneous system as it is ex-
cited by different displacement functions along the con-
tinuum of frequencies.

As a practical matter, the imaging systetypically ul-
trasound or MRI resolution and noise characteristics will
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